Efficient adsorption of super greenhouse gas (tetrafluoromethane) in carbon nanotubes.

نویسندگان

  • Piotr Kowalczyk
  • Robert Holyst
چکیده

Light membranes composed of single-walled carbon nanotubes (SWNTs) can serve as efficient nanoscale vessels for encapsulation of tetrafluoromethane at 300 K and operating external pressure of 1 bar. We use grand canonical Monte Carlo simulation for modeling of CF4 encapsulation at 300 K and pressures up to 2 bar. We find that the amount of adsorbed CF4 strongly depends on the pore size in nanotubes; at 1 bar the most efficient nanotubes for volumetric storage have size R = 0.68 nm. This size corresponds to the (10,10) armchair nanotubes produced nowadays in large quantities. For mass storage (i.e., weight %) the most efficient nanotubes have size R = 1.02 nm corresponding to (15,15) armchair nanotubes. They are better adsorbents than currently used activated carbons and zeolites, reaching approximately equal to 2.4 mol kg(-1) of CF4, whereas, the best activated carbon Carbosieve G molecular sieve can adsorb 1.7 mol kg(-1) of CF4 at 300 K and 1 bar. We demonstrate that the high enthalpy of adsorption cannot be used as an only measure of storage efficiency. The optimal balance between the binding energy (i.e., enthalpy of adsorption) and space available for the accommodation of molecules (i.e., presence of inaccessible pore volume) is a key for encapsulation of van der Walls molecules. Our systematic computational study gives the clear direction in the timely problem of control emission of CF4 and other perfluorocarbons into atmosphere.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Applicability of molecular simulations for modelling the adsorption of the greenhouse gas CF4 on carbons.

Tetrafluoromethane, CF(4), is a powerful greenhouse gas, and the possibility of storing it in microporous carbon has been widely studied. In this paper we show, for the first time, that the results of molecular simulations can be very helpful in the study of CF(4) adsorption. Moreover, experimental data fit to the results collected from simulations. We explain the meaning of the empirical param...

متن کامل

A Theoretical Study of H2S and CO2 Interaction with the Single-Walled Nitrogen Doped Carbon Nanotubes

The physical adsorption of hydrogen sulfide and carbon dioxide gases on the zigzag (5,0) carbon nanotubes doped with nitrogen was investigated through the application of B3LYP/6-31G* at the level of theory on Gaussian 03 software. A variety of stable and high abundance structures of nitrogen doped carbon nanotubes were considered in order to study the interaction between the mentioned gases in ...

متن کامل

A First-Principles Study on Interaction between Carbon Nanotubes (10,10) and Gallates Derivatives as Vehicles for Drug Delivery

First principles calculations were carried out for investigation the novel 7-hydroxycoumarinyl gallates derivatives in gas and liquid phases using density functional theory (DFT) method. Computational chemistry simulations were carried out to compare calculated quantum chemical parameters for gallates derivatives. All calculations were performed using DMol3 code which is based on DFT. The Doubl...

متن کامل

A Theoretical Study of H2S and CO2 Interaction with the Single-Walled Nitrogen Doped Carbon Nanotubes

The physical adsorption of hydrogen sulfide and carbon dioxide gases on the zigzag (5,0) carbon nanotubes doped with nitrogen was investigated through the application of B3LYP/6-31G* at the level of theory on Gaussian 03 software. A variety of stable and high abundance structures of nitrogen doped carbon nanotubes were considered in order to study the interaction between the mentioned gases in ...

متن کامل

Study of Methane Storage and Adsorption Equilibria in Multi-Walled Carbon Nanotubes

Adsorbed natural gas has various advantages and is relatively more economical than liquefaction and compression. Carbon nanotubes can be introduced as a new candidate for natural gas storage. In this study, adsorption of methane was firstly studied on the as-prepared multi-walled carbon nanotubes, and then chemical and physical treatment of MWCNTs was performed to enhance the methane adsorp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental science & technology

دوره 42 8  شماره 

صفحات  -

تاریخ انتشار 2008